On the Mechanism for the Phototransformation of 3-Alkoxy-2-(2'-furyl)-4-oxo-4H-1-benzopyrans

Satish C. Gupta,* Ashok Saini, Devinder Kumar, Narender S. Yadav, Kuldeep Chand, Satbir Mor and Som N. Dhawan
Department of Chemistry, Kurukshetra University, Kurukshetra 132119, Haryana, India

Photoirradiation of 3-alkoxy-6-chloro-2-(2^{\prime}-furyl)-4-oxo-4H-1-benzopyrans 3 led to the formation of methyl 8-chloro-10-oxo-2-phenyl-2,3,4,10-tetrahydropyrano[3,2-b][1]benzopyran-3-ylacetate 4. The reaction proceeds through the formation of 8 -chloro-4-phenyl-3a,4,6,11b-tetrahydrofuro[$2^{\prime} .3^{\prime}: 4,5$] pyrano [3,2-b] benzopyran-6-one $5 a$, which subsequently undergoes a ring contraction-ring expansion mechanism to give the cyclopropanecarbaldehyde 8 followed by its rearrangement to ketene 10 via the carbene 9 to furnish ester 4. The various intermediates have been isolated and identified, and their stereochemistry was established from their 'H NMR spectra.

Conjugated enones with suitable substituents at the α-position, when subjected to photolysis, are known to undergo $\gamma-\mathrm{H}$ abstractions. ${ }^{1}$ The products obtained depend invariably upon the nature of the substituents present in the substrates: viz. 2-alkyl-3-arylcyclohex-2-enones ${ }^{2}$ and 3 -alkoxy-2-phenyl-4-oxo-4H-1-benzopyrans ${ }^{3}$ afforded photocyclised angular products whereas 3-benzyloxy-2-styrylchromones, ${ }^{4}$ upon exposure to UV light, yielded tricyclic linear products. In contrast 3 -methoxy-2-methylchromone has been found to lead to the formation of a novel dimeric oxetanol. ${ }^{5}$ It thus became of interest to investigate the photochemistry of 3 -alkoxychromones bearing a furyl group instead of a Me, Ph or $\mathrm{CH}=\mathrm{CHPh}$ at $\mathrm{C}(2)$, since furans themselves are known to undergo phototransformations. ${ }^{6}$ Such a system allows another dimension, here, to be studied as it becomes a bichromophoric system, an enone coupled to a furan.

Results and Discussion

The target molecules, i.e., 2-(2^{\prime}-furyl)-3a ${ }^{7}$ and 2-(5'-methyl-2'-furyl)-3-benzyloxy-4-oxo-4H-1-benzopyran 3b were synthesised as follows (Scheme 1).

Photoirradiation of 3a in methanol produced ester 4, whose structure became evident from its ${ }^{1} \mathrm{H}$ NMR and mass spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz) of compound 4 showed a doublet at $\delta_{\mathrm{H}} 5.01(1 \mathrm{H}, J 8 \mathrm{~Hz}, 2-\mathrm{H})$, a complex multiplet at δ_{H} $3.20-2.60\left(3 \mathrm{H}, 4-\mathrm{H}_{2}\right.$ and $\left.3-\mathrm{H}\right)$, a doublet at $\delta_{\mathrm{H}} 2.43-2.31(2 \mathrm{H}$, $\left.J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, and a singlet at $\delta_{\mathrm{H}} 3.64\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$. The relative chemical shifts assigned to the alicyclic protons were confirmed by irradiation of the cluster in the range $\delta_{\mathrm{H}} 3.20-2.60$, which converted the doublets due to $2-\mathrm{H}$ and $3-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ into singlets. The structure of compound 4 has been further corroborated by its mass spectrum, which showed two retro-Diels-Alder (RDA) fragmentation modes, thereby indicating the presence of both chromone and pyran moieties in compound 4 (Scheme 2).

Regarding the stereochemistry of the pyran ring C it is assumed to be in the inverting half-chair form with two groups Ph and $3-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ in ψ-equatorial positions ${ }^{8}(J 8 \mathrm{~Hz})$ (Fig 1).
The transformation $\mathbf{3 a} \longrightarrow 4$ can be rationalised as follows: compound 3a on photolysis undergoes a $\gamma-\mathrm{H}$ abstraction by the excited carbonyl group of the chromone moiety to give 5 a as analogously reported in earlier cases. ${ }^{2-4}$ Compound 5a, under the reaction conditions, may then undergo a ring contraction-ring expansion process ${ }^{9}$ to produce biradical intermediate 6a which, through the intervention of the

Scheme 1 Reactions and conditions: i, $\mathrm{NaOH}, \mathrm{EtOH}$; ii, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$; iii, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{PhCH}_{2} \mathrm{Cl}, \mathrm{Me}_{2} \mathrm{CO}$

Scheme 2
mesomeric biradical 7a, can give the cyclopropanecarbaldehyde 8a. Alternatively, biradical 7a may rearrange through carbene 9 to give the ketene ${ }^{10} 10$ which then adds to methanol to form the ester 4 (Scheme 3).
To confirm this speculative mechanism, compound 3a was irradiated in benzene instead of methanol, under the above reaction conditions, which provided tetracycle $5 \mathrm{5a}$ whose

Fig. 1

Scheme 3 Conditions: i, $h v$, ii, MeOH
structure was again confirmed by its ${ }^{1} \mathrm{H}$ NMR and mass spectra. That $\mathbf{3 a} \longrightarrow 5 \mathrm{a}$ is only a photorearrangement was confirmed by the peak at $\mathrm{M}^{+} 352 / 354$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 a revealed that protons belonging to the furan moiety in substrate 3a had moved to higher field, and the signals due to 3-

Fig. $2500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the cyclopropanecarbaldehydic protons of compound 8a
$\mathrm{OCH}_{2} \mathrm{Ph}\left(\delta_{\mathrm{H}} 5.27\right.$ present in compound 3 a$)$ were missing. The spectrum showed resonances at $\delta_{\mathrm{H}} 6.55(1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{~Hz}, 2-\mathrm{H})$, $5.20(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, 11 \mathrm{~b}-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{d}, J$ $10.8 \mathrm{~Hz}, 4-\mathrm{H})$ and a complex multiplet at $\delta_{\mathrm{H}} 3.35-3.02(1 \mathrm{H}, \mathrm{m}$, $3 \mathrm{a}-\mathrm{H})$. Double irradiation of the signals between $\delta 3.35$ and 3.02 converted the doublets at $\delta_{\mathrm{H}} 5.20$ and 4.32 into singlets and the multiplet at $\delta_{\mathrm{H}} 4.83$ into a doublet ($J 2 \mathrm{~Hz}$). Regarding the stereochemistry of ring junction C / D in compound $\mathbf{5 a}$, it could be a result of the preferred direction of protonation of the preceding enol; a consequence of the formation of the lower energy cis-isomer compared with the trans one.

That the three methine protons ($11 \mathrm{~b}-\mathrm{H}, 3 \mathrm{a}-\mathrm{H}$ and $4-\mathrm{H}$) are in a cis-orientation has been confirmed by coupling constants $J_{11 \mathrm{~b}, 3 \mathrm{a}} 8.2 \mathrm{~Hz}^{11}$ and $J_{3 \mathrm{a}, 4} 10.8 \mathrm{~Hz}$. That the ring C is in a halfchair conformation with the phenyl ring held in an equatorial position is borne out by the fact that 3-H becomes shielded as compared with a similar proton in the parent compound $\mathbf{5 c},{ }^{12}$ where no phenyl group is available at $C(4)$.

The tetracyclic compound $\mathbf{5 a}$ on further irradiation in benzene was completely converted into the cyclopropanecarbaldehyde 8a, which showed $v_{\text {max }} / \mathrm{cm}^{-1}$ at 1695 (CHO) and 1640 (CO), and $m / z 352 / 354\left(\mathrm{M}^{+}, 8 \%\right)$, indicating again only a molecular rearrangement of the furan 5 a to the cyclopropanecarbaldehyde 8a. A $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum (Fig. 2) of compound 8a showed resonances at $\delta_{\mathrm{H}} 9.410(1 \mathrm{H}, \mathrm{d}, J 2.9 \mathrm{~Hz}$, CHO), 3.151-3.130 (1 H, ddd, 1-H), 3.007-2.977 (1 H , ddd, 1aH) and $2.885-2.861(1 \mathrm{H}, \mathrm{dd}, 9 \mathrm{~b}-\mathrm{H})$. Decoupling of the doublet at $\delta 9.410$ converted the ddd at $\delta 3.14(1-\mathrm{H})$ into a quartet $(J 3.5$ and 4.8 Hz) and, conversely, irradiation of the signal at $\delta 3.14$ converted the ddd due to $1 \mathrm{a}-\mathrm{H}$ to a quartet ($J 1.2$ and 8.9 Hz), and the dd due to $9 \mathrm{~b}-\mathrm{H}$ to a doublet ($J 8.9 \mathrm{~Hz}$). The coupling constants between the various protons proved helpful in elucidating their stereochemical relationships. That $9 \mathrm{~b}-\mathrm{H}$ and $1 \mathrm{a}-\mathrm{H}$ are cis to each other and that $1-\mathrm{H}$ is trans to both $9 \mathrm{~b}-\mathrm{H}$ and Ia-H is brought out by the fact that $J_{9 \mathrm{~b}, 1}, J_{1,1 \mathrm{a}}$ and $J_{9 \mathrm{~b}, 1 \mathrm{aa}}$ are $3.5,4.8$ and 8.8 Hz , respectively. ${ }^{1{ }^{1}}$ Padwa and Koehn ${ }^{14}$ have observed that in cyclopropanecarbaldehydes fused to cyclohexanes, 1-H appears at $\delta_{\mathrm{H}} \sim 2.6$, about 0.55 ppm upfield of the signal observed in the present case ($\delta_{\mathrm{H}} 3.15$). It may be suggested here, of course with a little reservation, that the pyran ring is in a boat form and in such a conformation the separation between $1-\mathrm{H}$ and one of the sp^{3}-orbitals of oxygen (of the pyran) would be minimal. This would offer extra deshielding to 1-H, thus implying that the CHO group is exo. From Molecular Mechanics Program (MMP) calculations (Fig. 3), such a suggestion can be seen to be tenable. We mention here that the

Fig. 3 MMP calculations on the conformation of rings C and D in compound 8a
tendency of the pyran ring to exist in the boat form, rather than in a preferred chair form, is probably due to the presence of the fused cyclopropane ring which makes the energy difference between the chair form and boat form considerably less than it normally is. Of principal significance here was the signal at δ_{H} 5.57 which could be assigned to $2-\mathrm{H}$. Its splitting (1.2 Hz) shows that the planes containing $1 \mathrm{a}-\mathrm{H}$ and $2-\mathrm{H}$ possess a torsion angle φ tending to 90°. The carbon skeleton of compound 8a was further confirmed from its fully decoupled ${ }^{13} \mathrm{C}$ NMR spectrum (see Experimental section).

Alternatively to the above proposed biradical mechanism (Scheme 3), these ring-contraction mechanisms may be looked upon as 1,3 -sigmatropic shifts, at least formally. ${ }^{16}$ Taking a cue from the above experiments, when compound 3 a was photolysed in methanol and the reaction was carefully monitored (TLC), it was found that the ester 4 was formed through the intermediacy of tetracycles $\mathbf{5 a}$ and $\mathbf{8 a}$. In order to gain additional information about these transformations, we irradiated compound 3b separately in methanol and benzene and obtained intermediates $\mathbf{5 b}$ and $\mathbf{8 b}$ in each case. The structure of each of these compounds was confirmed from NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and mass spectral data.

$\begin{aligned} 8 a ; R & =H \\ b ; R & =M e\end{aligned}$
It has been observed that, in the photolysis of compound 3a, the formation of the aldehyde 8a commences after almost the complete depletion of the furan intermediate 5a, whereas the formation of the cyclopropyl ketone $\mathbf{8 b}$ begins long before intermediate $\mathbf{5 b}$ completely disappears. The reason for such behaviour is hard to comprehend, but a possible explanation is that the presence of the Me group might render the cleavage of the $\mathrm{C}-\mathrm{O}$ bond thermodynamically easier than in the intermediate 5 a. That compound 5 a is the sole primary photoproduct of substrate 3 a (in methanol or benzene) was confirmed by irradiation of the latter for different times. The band at $\lambda_{\text {max }}$ 323 (due to $\mathrm{C}=\mathrm{O}$ in 3 a) rapidly decreased in intensity and the absorption belonging to compound 5 a rapidly appeared; in addition, the changes in the spectrum involved an isosbestic point at 255 nm (Fig. 4).

Experimental

M.p.s were measured on a sulfuric acid bath and are uncorrected. The IR spectra (Nujol) were scanned on a PerkinElmer IR-842 spectrophotometer and the NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) spectra $\left(\mathrm{CDCl}_{3}\right)$ were recorded on a Perkin-Elmer R-32 (90 MHz) spectrometer or a JEOL 100, Bruker WH 200, or GE 500 MHz spectrometer. The chemical shifts are expressed on the

Fig. 4 UV spectrum of compound 3a for different irradiation times: A (0 min), B (1 min), C (2 min), D (3 min)
δ scale with SiMe_{4} as internal standard, with J values given in Hz . Mass spectra were recorded on a JMA 2000 on-line spectrometer with a direct insertion probe at 70 eV . TLC plates were coated with silica gel-G (suspended in water) and iodine vapour was used as the visualising agent. Silica gel (60-120 mesh) was used for column chromatography. The columns were packed and left overnight, before being used for fractionations. Light petroleum refers to the fraction with distillation range $60-80^{\circ} \mathrm{C}$.

1-(5'-Chloro-2'-hydroxyphenyl)-3-(2"-furyl)propenone 1a.A solution of 1-(5-chloro-2-hydroxyphenyl)ethanone (6.8 g , 0.04 mol) and 2 -furaldehyde ($3.8 \mathrm{~g}, 0.04 \mathrm{~mol}$) in ethanol at $0^{\circ} \mathrm{C}$ was stirred with powdered $\mathrm{NaOH}(8.0 \mathrm{~g}, 0.2 \mathrm{~mol})$. The reaction mixture, deep red, was stirred for 3 h and then acidified with dil. HCl to give compound ia as a yellow solid $(8.0 \mathrm{~g}, 80 \%)$, m.p. $90-91^{\circ} \mathrm{C}$ (lit., ${ }^{7} 85^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3200(\mathrm{OH})$ and 1660 (CO); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.75\left(1 \mathrm{H}\right.$, br s, $\left.2^{\prime}-\mathrm{OH}\right), 7.82(1 \mathrm{H}$, d, $\left.6^{\prime}-\mathrm{H}\right), 7.75-7.15\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-, 2-, 3-\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 6.95(1 \mathrm{H}, \mathrm{d}$, $\left.3^{\prime}-\mathrm{H}\right), 6.82\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{H}\right)$ and $6.55\left(1 \mathrm{H}, \mathrm{dd}, 4^{\prime \prime}-\mathrm{H}\right)$ (Found: C, $62.7 ; \mathrm{H}, 3.5 . \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 62.78 ; \mathrm{H}, 3.62 \%$).

1-(5'-Chloro-2'-hydroxyphenyl)-3-(5"-methyl-2"-furyl)propenone 1b.- 86%), m.p. $156-157^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3200(\mathrm{OH})$ and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.85\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{OH}\right), 7.85(1$ $\left.\mathrm{H}, \mathrm{d}, J 2,6^{\prime}-\mathrm{H}\right), 7.60-7.20\left(3 \mathrm{H}, \mathrm{m}, 2-, 3-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 6.94(1 \mathrm{H}, \mathrm{d}$, $\left.3^{\prime}-\mathrm{H}\right), 6.70\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right)$ and $2.42(3 \mathrm{H}, \mathrm{s}$, $5 "-\mathrm{Me}$) (Found: $\mathrm{C}, 63.85 ; \mathrm{H}, 4.2 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$ requires C , $64.00 ; \mathrm{H}, 4.19 \%$).

6-Chloro-2-(2'-furyl)-3-hydroxy-4-oxo-4H-1-benzopyran 2a.To a stirred solution of compound $\mathbf{1 a}(3.4 \mathrm{~g}, 13.6 \mathrm{mmol})$ in methanol $\left(20 \mathrm{~cm}^{3}\right)$-aq. $\mathrm{NaOH}\left(10 \mathrm{~cm}^{3} ; 20 \%\right)$ cooled to $0^{\circ} \mathrm{C}$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(5 \mathrm{~cm}^{3}\right.$) dropwise (5 h). The reaction mixture, on decomposition with dil. HCl , gave compound 2 a as a yellow solid ($1.3 \mathrm{~g}, 60 \%$), m.p. $198^{\circ} \mathrm{C}\left(\right.$ (lit., ${ }^{7} 168^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3260$
(OH) and $1635(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $3-\mathrm{OH}), 8.18(1 \mathrm{H}, \mathrm{brs}, 5-\mathrm{H}), 7.75(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}), 7.58(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 7.37\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$ and $6.25\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$ (Found: C, $58.4 ; \mathrm{H}, 2.6 . \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 58.43 ; \mathrm{H}, 2.67 \%$).

6-Chloro-3-hydroxy-2-(5'-methyl-2'-furyl)-4-oxo-4H-1-benzopyran 2b.-(71%), m.p. $204-206{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3240(\mathrm{OH})$ and $1636(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{OH}), 8.15(1$ $\mathrm{H}, \mathrm{d}, J 2.4,5-\mathrm{H}), 7.70(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}), 7.37\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $3^{\prime}-$ $\mathrm{H}), 6.20\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right)$ and $2.47\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right)$ (Found: C, 60.6 ; $\mathrm{H}, 3.1 . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 60.76 ; \mathrm{H}, 3.25 \%$).

3-Benzyloxy-6-chloro-2-(2'-furyl)-4-oxo-4H-1-benzopyran 3a.-A suspension of compound $2 \mathrm{a}(4.0 \mathrm{~g}, 15 \mathrm{mmol})$, benzyl chloride ($\left.1.72 \mathrm{~cm}^{3}, 15 \mathrm{mmol}\right), \mathrm{KI}(4.0 \mathrm{~g})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{~g})$ in acetone ($200 \mathrm{~cm}^{3}$) was refluxed for 6 h . Filtration, evaporation and passage of the residue through a column of silica gel gave compound 3a ($4.5 \mathrm{~g}, 83 \%$), m.p. $122^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1620$ (CO); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.16(1 \mathrm{H}, \mathrm{d}, J 2,5-\mathrm{H}), 7.65-7.15(9 \mathrm{H}, \mathrm{m}$, $7-, 8-, 3^{\prime}-$ and $5^{\prime}-\mathrm{H}$ and $\left.3-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.58\left(1 \mathrm{H}, \mathrm{dd}, 4^{\prime}-\mathrm{H}\right)$ and $5.27\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCH}_{2} \mathrm{Ph}\right.$) (Found: C, 68.2; H, 3.7. $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 68.08 ; \mathrm{H}, 3.68 \%$).

3-Benzyloxy-6-chloro-2-(5'-methyl-2'-furyl)-4-oxo-4H-1-benzopyran 3b.- 83%), m.p. $127-129^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1635$ (CO); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.18(1 \mathrm{H}, \mathrm{d}, J 2,5-\mathrm{H}), 7.60-7.25(7 \mathrm{H}, \mathrm{m}$, 7 - and $\left.8-\mathrm{H}, 3-\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.17\left(1 \mathrm{H}, \mathrm{d}, J 2,3^{\prime}-\mathrm{H}\right), 6.16(1 \mathrm{H}, \mathrm{d}, J$ $\left.2,4^{\prime}-\mathrm{H}\right), 5.28\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $2.42\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right)$ (Found: $\mathrm{C}, 68.8 ; \mathrm{H}, 3.8 . \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 68.85 ; \mathrm{H}$, 4.09%).

Irradiation of 3-Benzyloxy-6-chloro-2-(2'-furyl)-4-oxo-4H-1benzopyran in Methanol 3a.-The benzopyran 3a $(600 \mathrm{mg})$ was dissolved in magnesium-dried methanol and the solution was refluxed for 5 min . The solution was outgassed with nitrogen for 1 h and was then irradiated in an immersion apparatus with a 450 W high-pressure mercury arc (Hanovia) surrounded by a Pyrex water-cooled jacket. After 1.5 h , removal of the solvent under reduced pressure yielded a crude product, which was chromatographed over silica gel. The column was eluted with light petroleum ($300 \mathrm{~cm}^{3}$), light petroleum-benzene ($100 \mathrm{~cm}^{3}$; $1: 1$) to elute starting compound 3a; continued elution, with benzene-ethyl acetate ($19: 1$), extracted tricycle $4(60 \mathrm{mg}, 20 \%$), m.p. $211-212^{\circ} \mathrm{C} ; m / z 384 / 386\left(\mathrm{M}^{+}, 25 \%\right)$ and $117(100)$; $\nu_{\text {max }} / \mathrm{cm}^{-1} 1735(\mathrm{CO})$ and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.22$ $(1 \mathrm{H}, \mathrm{d}, J 2,9-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{dd}, J 2$ and 8, 7-H), 7.48-7.25 (6 H , $\mathrm{m}, 6-\mathrm{H}$ and $2-\mathrm{Ph}$), $5.01(1 \mathrm{H}, \mathrm{d}, J 8,2-\mathrm{H}), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.20-2.60\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.3-\mathrm{H}\right)$ and $2.43-2.31(2 \mathrm{H}, \mathrm{d}, J 6$, 3- $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$) (Found: $\mathrm{C}, 65.4 ; \mathrm{H}, 4.4 . \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClO}_{5}$ requires C, $65.53 ; \mathrm{H}, 4.42 \%$).

Irradiation of Compound 3a in Benzene.-A solution of compound $3 \mathrm{a}(1.0 \mathrm{~g})$ in thiophene-free, dry benzene $\left(100 \mathrm{~cm}^{3}\right)$ was photolysed under the above conditions for 25 min . The reaction mixture, on chromatography, provided starting compound 3a (40 mg recovery) and the tetracycle 5 a (900 mg , 90%), m.p. $173-174{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 1649(\mathrm{CO}) ; m / z 352 / 354\left(\mathrm{M}^{+}\right.$, 100%); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.16(1 \mathrm{H}, \mathrm{d}, J 2.5,7-\mathrm{H}), 7.57-7.20$ ($7 \mathrm{H}, \mathrm{m}, 9$ - and $10-\mathrm{H}$, and $4-\mathrm{Ph}$), $6.55(1 \mathrm{H}, \mathrm{d}, J 2.8,2-\mathrm{H}$), $5.20(1$ $\mathrm{H}, \mathrm{d}, J 8.2,11 \mathrm{~b}-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{d}, J 10.8,4-\mathrm{H}$ and $3.35-3.02$ ($1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$) (Found: C, 68.1; H, 3.75. $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 68.08 ; \mathrm{H}, 3.68 \%$).

Irradiation of Compound 5a in Benzene-A solution of compound 5 a (500 mg) in benzene ($80 \mathrm{~cm}^{3}$) was photolysed (450 W Hanovia lamp) and the reaction mixture was then chromatographed to give the cyclopropanecarbaldehyde $\mathbf{8 a}$, (80 $\mathrm{mg}, 16 \%$), m.p. $150-151^{\circ} \mathrm{C}$; $m / z 352 / 354\left(\mathrm{M}^{+}, 8 \%\right)$ and $323 / 325$
($\mathrm{M}^{+}-\mathrm{CHO}, 100$); $v_{\text {max }} / \mathrm{cm}^{-1} 1695(\mathrm{CO})$ and $1640(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.410(1 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{CHO}), 8.16(1 \mathrm{H}, \mathrm{d}, J$ $2.5,5-\mathrm{H}), 7.57(1 \mathrm{H}$, dd, $J 8.0$ and $2.5,7-\mathrm{H}), 7.41-7.21(6 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}$ and $2-\mathrm{Ph}), 5.57(1 \mathrm{H}, \mathrm{d}, J 1.2,2-\mathrm{H}), 3.151-3.130(1 \mathrm{H}$, ddd, $J 2.9,3.5$ and $4.8,1-\mathrm{H}), 3.007-2.977(1 \mathrm{H}$, ddd, $J 1.2,4.8$ and 8.8, $1 \mathrm{a}-\mathrm{H})$ and $2.885-2.861(1 \mathrm{H}$, dd, $J 3.5$ and $8.8,9 \mathrm{~b}-\mathrm{H})$; $\delta_{\mathrm{c}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.30$ (CHO), 169.62 (C-4), 153.30 (C8a), 152.10 (C-9a), 137.33 (C-3a), 133.50 (C-6), 133.30 (C-7), $130.84,126.74,125.48$ and 125.44 (C-Ph), 128.83 (C-5), 125.13 (C-4a), 119.40 (C-8), 71.56 (C-2), 33.95 (C-1a), 31.85 (C-1) and 21.88 (C-9b) (Found: C, 68.1; H, 3.8. $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClO}_{4}$ requires C, 68.08 ; $\mathrm{H}, 3.68 \%$).

Irradiation of Compound 8a in Methanol.-A solution of compound 8 a (50 mg) in methanol ($50 \mathrm{~cm}^{3}$) was photolysed to give the ester 4, identified through its IR and NMR spectra.

Irradiation of Compound 3b in Benzene.-A solution of compound 3 b (500 mg) in benzene ($70 \mathrm{~cm}^{3}$) was irradiated for 60 min , and the reaction mixture on chromatography gave the tetracycle $\mathbf{5 b}$ ($175 \mathrm{mg}, 35 \%$), m.p. $166-168^{\circ} \mathrm{C}$, $v_{\text {max }} / \mathrm{cm}^{-1} 1660$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.20(1 \mathrm{H}, \mathrm{d}, J 2,7-\mathrm{H}), 7.60-7.25$ (7 $\mathrm{H}, \mathrm{m}, 9-\mathrm{and} 10-\mathrm{H}$, and $4-\mathrm{Ph}$), 5.25 ($1 \mathrm{H}, \mathrm{d}, J 9,11 \mathrm{~b}-\mathrm{H}$), 4.48 (1 $\mathrm{H}, \mathrm{d}, J 2.5,3-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{d}, J 11,4-\mathrm{H}), 3.32-3.02(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-$ H) and $1.90(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$ [Found: $\mathrm{M}^{+}, 366.0648(100 \%)$. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{4}$ requires $\left.M, 366.0658\right]$.
Further elution of the column with benzene-ethyl acetate furnished a second solid, compound $\mathbf{8 b}(250 \mathrm{mg}, 50 \%$), m.p. $180-$ $182^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1700(\mathrm{CO})$ and $1645(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.157(1 \mathrm{H}, \mathrm{d}, J 2.4,5-\mathrm{H})=7.561-7.264(7 \mathrm{H}, \mathrm{m}, 7$ - and $8-$ H, 2-Ph), $5.58(1 \mathrm{H}, \mathrm{d}, J 0.8,2-\mathrm{H}), 3.094-3.053(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $4.8,1-\mathrm{H}), 2.943-2.874(1 \mathrm{H}$, ddd, $J 0.8,4.8$ and 8.9 , 1a-H), 2.766-2.724 (1 H , dd, $J 3.5$ and $8.9,9 \mathrm{~b}-\mathrm{H}$) and $2.421(3 \mathrm{H}, \mathrm{s}, 1-$ COMe); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 206.13$ (COMe), 169.60 (C-4), 153.31 (C-8a), 152.95 (C-9a), 137.59 (C-3a), 133.37 (C-6), 133.15 (C-7), 130.77, 126.80, 125.67 and 125.46 (C-Ph), 128.76 (C-5), 125.27 (C-4a), 119.40 (C-8), 71.57 (C-2), 33.42 (C-1a), $32.69(\mathrm{Me}), 31.32(\mathrm{C}-1)$ and 22.62 (C-9b) [Found: M^{+}, $366.0653(6 \%), 323.0462\left(\mathrm{M}^{+}-\mathrm{COMe}, 100\right) . \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{4}$ requires $M, 36.0658$).

Acknowledgements

We are most grateful to CSIR, New Delhi and DAE, Bombay, India for financial support.

References

I W. C. Agosta and A. B. Smith, III, J. Am. Chem. Soc., 1971, 93, 5513; A. B. Smith, III, and W. C. Agosta, J. Am. Chem. Soc., 1973, 95, 1961; A. Enger, A. Feigenbaum, J. P. Pete and J. L. Wolfhugel, Tetrahedron, 1978, 34, 1509 ; J. C. Arnould, J. Cossy and J. P. Pete, Tetrahedron, 1981, 37, 1921; J. Cossy and J. P. Pete, Heterocycles, 1984, 22, 97; J. C. Arnould, A. Enger, A. Feigenbaum and J. P. Pete, Tetrahedron, 1979, 35, 2501.
2 A. Feigenbaum, Y. Fort, J. P. Pete and D. Scholler, J. Org. Chem., 1986, 51, 4424.
3 A. C. Waiss and J. Corse, J. Am. Chem. Soc., 1965, 87, 2068; A. C. Waiss, R. E. Lundin, A. Lee and J. Corse, J. Am. Chem. Soc., 1967, 89, 6213; T. Matsuura and H. Matsushima, Tetrahedron, 1968, 24, 6615.

4 S. C. Gupta, N. S. Yadav and S. N. Dhawan, Indian J. Chem., Sect. B, 1991, 30, 790.
5 S. C. Gupta and S. K. Mukerjee, Tetrahedron Lett., 1973, 5073.
6 R. Srinivasan, J. Am. Chem. Soc., 1967, 89, 1758, 4812; A. Couture and A. Lablache-Combier, Chem. Commun., 1971, 891; A. Couture, A. Delevallee, A. Lablache-Combier and C. Parhanyl, Tetrahedron, 1975, 31, 785.
7 K. A. Thakar, D. D. Goswami and D. G. Pachor, J. Indian Chem. Soc., 1973, 50, 420; A. V. S. Rao and N. V. S. Rao, Indian J. Chem., 1969, 7, 1091. This reference describes compounds 1a and 2a only, precursors of $\mathbf{3 a}$.

8 H. Booth, D. H. Huckle and I. M. Lockhart, J. Chem. Soc., Perkin Trans. 2, 1973, 227; J. W. Clark Lewis, L. M. Jackman and T. M. Sportswood, Aust. J. Chem., 1964, 17, 632.
9 E. E. Van Tamlen and T. Whitesides, J. Am. Chem. Soc., 1971, 93, 29; 1968, 90, 94.
10 L. Schradar and W. Hartman, Tetrahedron Lett., 1973, 3995.
11 K. G. R. Pachler and W. G. E. Underwood, Tetrahedron, 1967, 23, 1817: S. W. Banks, M. J. Steele, D. Ward and P. M. Dewick, J. Chem. Soc., Chem. Commun., 1982, 156.

12 S. C. Gupta, A. Saini and S. N. Dhawan, unpublished results.
13 W. G. Dauben and W. T. Wipke, J. Org. Chem., 1967, 32, 2976.

14 A. Padwa and W. Koehn, J. Org. Chem., 1973, 38, 4007.
15 J. W. Huffman, J. Org. Chem., 1959, 24, 447.
16 P. Scribe and J. Wiemann, Bull. Soc. Chim. Fr., 1971, 2268; J. Elguero, Bull. Soc. Chim. Fr., 1971, 1925; H. J. Rosenkranz and H. Schmid, Helv. Chim. Acta, 1968, 51, 1628.

Paper 4/03730H
Received 20th June 1994 Accepted 8th September 1994

